
MOSFET管失效的常見的六個原因分析
日期:2022-12-09 14:40:55 瀏覽量:2020 標簽: 失效分析
MOS管是金屬(metal)—氧化物(oxide)—半導體(semiconductor)場效應晶體管,或者稱是金屬—絕緣體(insulator)—半導體。MOS管的source和drain是可以對調的,他們都是在P型backgate中形成的N型區。要正確測試判斷MOSFET是否失效,重要關鍵是要找到失效背后的原因,并避免再犯同樣的錯誤,本文收集整理了一些資料,期望能對各位讀者有比較大的參閱價值。
用萬用表簡單檢測MOS管是否完好
測試MOS好壞用指針式萬用表方便點,測試時選擇歐姆R×10K檔,這時電壓可達10.5V,紅筆是負電位,黑筆是正電位。
測試步驟:
MOS管的檢測主要是判斷MOS管漏電、短路、斷路、放大。其步驟如下:
1)把紅筆接到MOS的源極S上,黑筆接到MOS管的漏極上,好的表針指示應該是無窮大。如果有阻值沒被測MOS管有漏電現象。
2)用一只100KΩ-200KΩ的電阻連在柵極和源極上,然后把紅筆接到MOS的源極S上,黑筆接到MOS管的漏極上,這時表針指示的值一般是0,這時是下電荷通過這個電阻對MOS管的柵極充電,產生柵極電場,由于電場產生導致導電溝道致使漏極和源極導通,故萬用表指針偏轉,偏轉的角度大,放電性越好。
3)把連接柵極和源極的電阻移開,萬用表紅黑筆不變,如果移開電阻后表針慢慢逐步退回到高阻或無窮大,則MOS管漏電,不變則完好。
4)然后一根導線把MOS管的柵極和源極連接起來,如果指針立即返回無窮大,則MOS完好。
MOSFET失效的六大原因分析
一、雪崩失效(電壓失效)
也就是我們常說的漏源間的BVdss電壓超過MOSFET的額定電壓,并且超過達到了一定的能力從而導致MOSFET失效。
簡單來說MOSFET在電源板上由于母線電壓、變壓器反射電壓、漏感尖峰電壓等等系統電壓疊加在MOSFET漏源之間,導致的一種失效模式。簡而言之就是由于就是MOSFET漏源極的電壓超過其規定電壓值并達到一定的能量限度而導致的一種常見的失效模式。
雪崩失效的預防措施:
雪崩失效歸根結底是電壓失效,因此預防我們著重從電壓來考慮。具體可以參考以下的方式來處理:
1、合理降額使用,目前行業內的降額一般選取80%-95%的降額,具體情況根據企業的保修條款及電路關注點進行選取;
2、合理的變壓器反射電壓;
3、合理的RCD及TVS吸收電路設計;
4、大電流布線盡量采用粗、短的布局結構,盡量減少布線寄生電感;
5、選擇合理的柵極電阻Rg;
6、在大功率電源中,可以根據需要適當的加入RC減震或齊納二極管進行吸收。
二、SOA失效(電流失效)
SOA失效是指電源在運行時異常的大電流和電壓同時疊加在MOSFET上面,造成瞬時局部發熱而導致的破壞模式。或者是芯片與散熱器及封裝不能及時達到熱平衡導致熱積累,持續的發熱使溫度超過氧化層限制而導致的熱擊穿模式。
1、受限于最大額定電流及脈沖電流;
2、受限于最大節溫下的RDSON;
3、受限于器件最大的耗散功率;
4、受限于最大單個脈沖電流;
5、擊穿電壓BVDSS限制區。
我們電源上的MOSFET,只要保證能器件處于上面限制區的范圍內,就能有效的規避由于MOSFET而導致的電源失效問題的產生。
SOA失效的預防措施:
1、確保在最差條件下,MOSFET的所有功率限制條件均在SOA限制線以內;
2、將OCP功能一定要做精確細致。
在進行OCP點設計時,一般可能會取1.1-1.5倍電流余量的工程師居多,然后就根據IC的保護電壓比如0.7V開始調試RSENSE電阻。有些有經驗的人會將檢測延遲時間、CISS對OCP實際的影響考慮在內。但是此時有個更值得關注的參數,那就是MOSFET的Td(off)。
三、體二極管失效
在橋式、LLC等有用到體二極管進行續流的拓撲結構中,由于體二極管遭受破壞而導致的失效。
在不同的拓撲、電路中,MOSFET有不同的角色,比如在LLC中,體內二極管的速度也是MOSFET可靠性的重要因素。漏源間的體二極管失效和漏源電壓失效很難區分,因為二極管本身屬于寄生參數。雖然失效后難以區分軀體緣由,但是預防電壓及二極管失效的解決辦法存在較大差異,主要結合自己電路來分析。
體二極管失效預防措施:
其實MOS管的D和S本質上是對稱的結構,只是溝道的兩個接點。但是由于溝道的開啟和關閉涉及到柵極和襯底之間的電場,那么就需要給襯底一個確定的電位。又因為MOS管只有3個管腳,所以需要把襯底接到另外兩個管腳之一。那么接了襯底的管腳就是S了,沒接襯底的管腳就是D,我們應用時,S的電位往往是穩定的。在集成電路中,比如CMOS中或者還有模擬開關中,由于芯片本身有電源管腳,所以那些MOS管的襯底并不和管腳接在一起,而是直接接到電源的VCC或者VEE,這時候D和S就沒有任何區別了。
四、諧振失效
在并聯功率MOSFET時未插入柵極電阻而直接連接時發生的柵極寄生振蕩。高速反復接通、斷開漏極-源極電壓時,在由柵極-漏極電容Cgd(Crss)和柵極引腳電感Lg形成的諧振電路上發生此寄生振蕩。當諧振條件(ωL=1/ωC)成立時,在柵極-源極間外加遠遠大于驅動電壓Vgs(in)的振動電壓,由于超出柵極-源極間額定電壓導致柵極破壞,或者接通、斷開漏極-源極間電壓時的振動電壓通過柵極-漏極電容Cgd和Vgs波形重疊導致正向反饋,因此可能會由于誤動作引起振蕩破壞。
諧振失效預防措施:
電阻可以抑制振蕩,是因為阻尼的作用。但柵極串接一個小電阻,并非解決振蕩阻尼問題。主要還是驅動電路阻抗匹配的原因,和調節功率管開關時間的原因。
五、靜電失效
靜電的基本物理特征為:有吸引或排斥的力量;有電場存在,與大地有電位差;會產生放電電流。這三種情形會對電子元件造成以下影響:
1、元件吸附灰塵,改變線路間的阻抗,影響元件的功能和壽命;
2、因電場或電流破壞元件絕緣層和導體,使元件不能工作(完全破壞);
3、因瞬間的電場軟擊穿或電流產生過熱,使元件受傷,雖然仍能工作,但是壽命受損。
靜電失效的預防措施:
MOS電路輸入端的保護二極管,其導通時電流容限一般為1mA 在可能出現過大瞬態輸入電流(超過10mA)時,應串接輸入保護電阻。由于初期設計時沒有加入保護電阻,所以這也是MOS管可能擊穿的原因,而通過更換一個內部有保護電阻的MOS管應可防止此種失效的發生。還有由于保護電路吸收的瞬間能量有限,太大的瞬間信號和過高的靜電電壓將使保護電路失去作用。所以焊接時電烙鐵必須可靠接地,以防漏電擊穿器件輸入端,一般使用時,可斷電后利用電烙鐵的余熱進行焊接,并先焊其接地管腳。
六、柵極電壓失效
柵極的異常高壓來源主要有以下3種原因:
1、在生產、運輸、裝配過程中的靜電。
2、由器件及電路寄生參數在電源系統工作時產生的高壓諧振。
3、在高壓沖擊時,高電壓通過Ggd傳輸到柵極(在雷擊測試時,這種原因導致的失效較為常見)。
至于PCB污染等級、電氣間隙及其它高壓擊穿IC后進入柵極等現象就不做過多解釋。
柵極電壓失效的預防措施:
柵源間的過電壓保護,即如果柵源間的阻抗過高,則漏源間電壓的突變會通過極間電容耦合到柵極而產生相當高的UGS電壓過沖,這一電壓會引起柵極氧化層永久性損壞, 如果是正方向的UGS瞬態電壓還會導致器件的誤導通。為此要適當降低柵極驅動電路的阻抗,在柵源之間并接阻尼電阻或并接穩壓值約20V的穩壓管。特別要注意防止柵極開路工作。
其次是漏極間的過電壓防護。如果電路中有電感性負載,則當器件關斷時,漏極電流的突變(di/dt)會產生比電源電壓高的多的漏極電壓過沖,導致器件損壞。應采取穩壓管箝位,RC箝位或RC抑制電路等保護措施。
以上是創芯檢測小編整理的MOSFET管失效相關內容,希望對您有所幫助。創芯檢測是一家電子元器件專業檢測機構,目前主要提供電容、電阻、連接器、MCU、CPLD、FPGA、DSP等集成電路檢測服務。專精于電子元器件功能檢測、電子元器件來料外觀檢測、電子元器件解剖檢測、丙酮檢測、電子元器件X射線掃描檢測、ROHS成分分析檢測。歡迎致電,我們將竭誠為您服務!
